Advanced R Statistical Programming and Data Models

Advanced R Statistical Programming and Data Models
  • eBook:
    Advanced R Statistical Programming and Data Models: Analysis, Machine Learning, and Visualization
  • Author:
    Matt Wiley, Joshua F. Wiley
  • Edition:
    1st ed. edition
  • Categories:
  • Data:
    February 21, 2019
  • ISBN:
  • ISBN-13:
  • Language:
  • Pages:
    638 pages
  • Format:

Book Description
Carry out a variety of advanced statistical analyses including generalized additive models, mixed effects models, multiple imputation, machine learning, and missing data techniques using R. Each chapter starts with conceptual background information about the techniques, includes multiple examples using R to achieve results, and concludes with a case study.

Written by Matt and Joshua F. Wiley, Advanced R Statistical Programming and Data Modelsshows you how to conduct data analysis using the popular R language. You’ll delve into the preconditions or hypothesis for various statistical tests and techniques and work through concrete examples using R for a variety of these next-level analytics. This is a must-have guide and reference on using and programming with the R language.  

What You’ll Learn
  • Conduct advanced analyses in R including: generalized linear models, generalized additive models, mixed effects models, machine learning, and parallel processing
  • Carry out regression modeling using R data visualization, linear and advanced regression, additive models, survival / time to event analysis
  • Handle machine learning using R including parallel processing, dimension reduction, and feature selection and classification
  • Address missing data using multiple imputation in R
  • Work on factor analysis, generalized linear mixed models, and modeling intraindividual variability 
Who This Book Is For 
Working professionals, researchers, or students who are familiar with R and basic statistical techniques such as linear regression and who want to learn how to use R to perform more advanced analytics. Particularly, researchers and data analysts in the social sciences may benefit from these techniques. Additionally, analysts who need parallel processing to speed up analytics are given proven code to reduce time to result(s).


Chapter 1: Univariate Data Visualization
Chapter 2: Multivariate Data Visualization
Chapter 3: GLM 1
Chapter 4: GLM 2
Chapter 5: GAMs
Chapter 6: ML: Introduction
Chapter 7: ML: Unsupervised
Chapter 8: ML: Supervised
Chapter 9: Missing Data
Chapter 10: GLMMs: Introduction
Chapter 11: GLMMs: Linear
Chapter 12: GLMMs: Advanced

Free sample

Add comments
Введите код с картинки:*
Кликните на изображение чтобы обновить код, если он неразборчив
Copyright © 2019